
Implementation of a context-sensitive
augmented reality application

Seminar Thesis

David Philipp Diener
2396965

At the Department of Economics and Management
at the Institute of Information Systems and Marketing (IISM)

Information & Market Engineering

Reviewer: Marius Schenkluhn
Second reviewer: Dr. Christian Peukert

31st of August 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

Contents

1 Introduction 1

2 Aspects of Context-sensitivity 2

3 Implementation 3

3.1 Surface-Detection . 3

3.2 3D-Navigation . 4

4 Limitations 6

5 Future Work 7

6 Declaration 8

Appendix 9

References 11

ii

1. Introduction

In recent years Extended Reality (XR) Technology is on the rise, supporting more and

more devices. We want to find ways to improve certain aspects of on XR Technology -

Augmented Reality (AR). Supporting context awareness, can greatly enhance user expe-

rience in AR applications, for example by adjusting to the individual needs of each user

(Yigitbas, Jovanovikj, Sauer, and Engels (2020))

While there is a number of conceptual works and system papers (where the state of the

implementation appears unclear), complex user or context models are rarely developed

Grubert, Langlotz, Zollmann, and Regenbrecht (2017). This is why we want to contribute

to current research by proposing a way of implementing AR applications which support

context awareness.

This paper will show the practical implementation of two aspects of context sensitivity

according to the Taxonomy, shown in 1.1.

Figure 1.1: Taxonomy proposed by Grubert et al. (2017)

1

2. Aspects of Context-sensitivity

The implementation proposed in this paper shows the application of the context-sensitivity

categories “Spatial Arrangement” and “Physical factors”.

Spatial Arrangement deals with the way, external information is presented inside the AR

application. Information Presentation is described by Grubert et al. (2017) as “adapting

the interface or the visualization used, while some other are less explicit how the con-

text information is applied to the AR interface”. In this implementation, we show the

application of spatial arrangement by creating a surface detection system.

Physical factors are part of the Environmental Factors. Environmental factors describes

the surrounding of the user and the AR system in which interaction takes place, i.e.,

external physical and technical factors that are not under control of the mobile AR system

or the user Grubert et al. (2017). In this implementation, we show the application of

physical factors by creating a real-time 3D Navigation system on top of the spatial /

geometric configuration of the physical world.

A navigation system, working with physical factors in AR was also proposed by Mulloni,

Seichter, and Schmalstieg (n.d.). It is described as an“[...] interface that provides continu-

ous navigational support for indoor scenarios where localization is only available at sparse,

discrete locations (info points).” This solution utilized info points which could be scanned

and would be used by the system to query the next navigation step. Although this solution

uses physical factors, it does not use the geometric configuration of the surroundings to

create the navigation in real time. The steps are hard-coded into the systems and only

retrieved when scanning the info points.

2

3. Implementation

The following chapter describes the implementation details of the two systems “Surface-

Detection” and “3D-Navigation”. Beforehand, the overall structure and technology stack

used in the application is introduced.

Unity Traditionally used as a game engine. Unity includes a XR framework, which facili-

tates the implementation of basic XR functionalities.

Mixed Reality Toolkit (MRTK) The MRTK is a project, developed by Microsoft. It con-

tains utility functions which can be used when developing MR applications. One of

the most important features we use here, are Spatial Awareness and Scene Under-

standing. Spatial Awareness can be used to scan and capture the spatial geometry

around the device. We can then use the Scene Understanding API to get the semantic

meaning of those objects.

3.1 Surface-Detection

Surface Detection relies on the MRTK Scene Understanding API. We request the active

Windows Scene Understanding Observer (WSUO) in the Scene. This object hold all infor-

mation about the present objects in the spatial environment at runtime. Iterating through

those objects allows for assigning every object into a layer, depending on the assigned sur-

face type by the Scene Understanding service (see 6.1). The Scene Understanding surface

types are therefore assigned to a walkable and obstacle Unity Layer:

• Walkable: Floor

• Obstacle: Wall, Platform, Background, Inferred

To enable placable objects to detect those surfaces now (with Unity’s Physics System),

the following conditions have to be met:

• Both participants of a collision need to have a collider component.

• At least one of the participants of a collision needs to have a rigidbody component

• The Layer Collision Matrix for Unity Physics has to be configured to allow the

collision between the layers of the participants of the collision

All objects provided by the WSUO are by default already instantiated in the scene and

come with a collider by default. The objects which will be placed in the context of surface

detection therefore need to have a collider, as well as a rigidbody. Figure 3.1 shows a

correctly configured game object, colliding with a wall object.

The surface detection itself takes place by defining the according trigger events for the

collider components. By using the events OnTriggerEnter (see 6.2) and OnTriggerExit

(see 6.3) Unity (2022) each objects tracks its own “placeability” state. If a collision in

OnTriggerEnter is detected, the layer of the object hit is compared with a preconfigured

list of allowed surfaces. If this check is positive the object can be placed. OnTriggerExit

reverts the placeability accordingly.

3

4 3. Implementation

Figure 3.1: A game object colliding with a wall on the obstacle layer

3.2 3D-Navigation

The 3D-Navigation system relies on the same layer structure as defined in 3.1. Additionally

a third party library, Mercuna Mercuna (2022) is used.

To setup a scene for 3D Navigation with Mercuna, three components have to be configured:

• Nav Octree: This game object holds the 3-Dimensional data structure represent-

ing the spatial geometry provided by the WSUO. The previously configured layers

Walkable and Obstacle are set to be included in the geometry of the octree.

• Nav Volume: Defines the maximum bound of the octree.

• Nav Seed: Starting point on where Mercuna“floods” the octree structure to generate

the navigation space.

To setup an agent for 3D Navigation with Mercuna, four components have to be configured:

• Mercuna Move Controller, Mercuna Obstacle, Mercuna 3D Navigation: The default

components provided by Mercuna to ensure basic movement functionality.

• AstarAI3D: Custom script which uses Mercuna 3D Navigation as a middleware to

simulate a patrol behavior (see 6.4).

Figure 3.2 shows a properly configured agent navigating on the Mercuna octree.

4

3.2. 3D-Navigation 5

Figure 3.2: An agent (marked blue) navigating the octree structure in realtime.

5

4. Limitations

Cold Start Problem The two systems that are introduced in this paper heavily rely on the

information about scene objects, provided by the WSUO. WSUO in return depends

on scanning the spatial environment with the help of a scanner. Therefore surface

detection and 3D-Navigation will only be possible after the XR-Headset has success-

fully scanned the environment. Alternatively a cached model of the environment

could be used to solve the cold start problem.

Scanning Details This project was developed and tested on the HoloLens 2. The spatial

scanning provided by this device turned out to be limited in the level of detail. For

example, narrow geometric objects like table legs could not be reliably detected.

6

5. Future Work
The surface detection could be improved by checking other spatial features, like space

needed on the target surface.

Especially in the context on mobile platforms like the HoloLens 2 the performance should

be considered, when developing computational intensive applications. The main reasons

for this are the maintenance of a stable framerate, while also keeping the battery usage

of the device as small as possible. An analysis on the performance impact of different

amounts of agents and parallel calculation of the paths could lead to insights on perfor-

mance optimization.

7

6. Declaration

Ich versichere hiermit wahrheitsgemäß, die Arbeit selbständig angefertigt, alle benutzten

Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was

aus Arbeiten anderer unverändert oder mit Abänderung entnommen wurde.

Karlsruhe, den 21. 08. 2022

David Philipp Diener

8

Appendix
Listing 6.1: Assigning layers to Objects provieded by the SceneUnderstanding API

fo r each (Spat ia lAwarenessSceneObject obj in sceneObserver .

SceneObjects . Values)

{
// Walkable

i f (wa lkab l eSur face s . HasFlag (obj . SurfaceType))

{
// s e t l a y e r s

obj . GameObject . l a y e r = LayerMask . NameToLayer (”

Walkable ”) ;

f o r each (Transform ch i l d in obj . GameObject . trans form)

{
ch i l d . gameObject . l a y e r = LayerMask . NameToLayer (”

Walkable ”) ;

}
Debug . Log (”Set ” + obj . Id + ” from ” + obj . GameObject

. l a y e r + ” to Walkable ”) ;

// save l a s t f l o o r h e i g h t

f l o o rHe i gh t = obj . GameObject . trans form . po s i t i o n . y ;

}

// Obs tac l e s

i f (ob s t a c l e Su r f a c e s . HasFlag (obj . SurfaceType)) {
// s e t l a y e r s

obj . GameObject . l a y e r = LayerMask . NameToLayer (”

Obstac l e s ”) ;

f o r each (Transform ch i l d in obj . GameObject . trans form)

{
ch i l d . gameObject . l a y e r = LayerMask . NameToLayer (”

Obstac l e s ”) ;

}
Debug . Log (”Set ” + obj . Id + ” from ” + obj . GameObject

. l a y e r + ” to Obstac l e s ”) ;

}
}

Listing 6.2: OnTriggerEnter

p r i va t e void OnTriggerEnter (Co l l i d e r other)

{
i f ((placeableLayerMask . va lue & (1 << other . trans form .

gameObject . l a y e r)) > 0)

9

10 6. Appendix

{
p l a cab l e = true ;

meshRenderer . mate r i a l = va l i dMate r i a l ;

}
e l s e

{
p l a cab l e = f a l s e ;

meshRenderer . mate r i a l = e r r o rMat e r i a l ;

}
}

Listing 6.3: OnTriggerExit

p r i va t e void OnTriggerExit (Co l l i d e r other)

{
i f ((placeableLayerMask . va lue & (1 << other . trans form .

gameObject . l a y e r)) > 0)

{
grounded = f a l s e ;

p l a cab l e = f a l s e ;

meshRenderer . mate r i a l = e r r o rMat e r i a l ;

} e l s e

{
i f (grounded)

{
p l a cab l e = true ;

meshRenderer . mate r i a l = va l i dMate r i a l ;

}
}

}

Listing 6.4: MonoBehaviour class to handle patrol behaviour of a Mercuna agent

pub l i c c l a s s AstarAI3D : MonoBehaviour{
pub l i c f l o a t minDistance ;

p r i va t e bool isAtHome = true ;

p r i va t e Transform currentTarget ;

[H ide InInspector] pub l i c Transform ta r g e tPo s i t i o n ;

[H ide InInspector] pub l i c Transform homePosition ;

void Star t ()

{
currentTarget = ta r g e tPo s i t i o n ;

10

11

GetComponent<Mercuna3DNavigation>() . NavigateToObject (

currentTarget . gameObject , OnMoveComplete , minDistance)

;

}

pr i va t e void OnMoveComplete (bool su c c e s s)

{
i f (isAtHome)

{
isAtHome = f a l s e ;

currentTarget = homePosition ;

}
e l s e

{
isAtHome = true ;

currentTarget = ta r g e tPo s i t i o n ;

}

GetComponent<Mercuna3DNavigation>() . NavigateToObject (

currentTarget . gameObject , OnMoveComplete , minDistance)

;

}
}

11

References

Grubert, J., Langlotz, T., Zollmann, S., & Regenbrecht, H. (2017). Towards pervasive

augmented reality: Context-awareness in augmented reality. IEEE Transactions on

Visualization and Computer Graphics, 23 (6), 1706–1724. doi: 10.1109/TVCG.2016

.2543720

Mercuna. (2022). Mercuna - 3d navigation for games. Retrieved from https://mercuna

.com/3d-navigation/

Mulloni, A., Seichter, H., & Schmalstieg, D. (n.d.). Indoor navigation with mixed reality

world-in-miniature views and sparse localization on mobile devices. In (pp. 212–215).

doi: 10.1145/2254556.2254595

Unity. (2022). Unity - scripting api: Collider. Retrieved from https://docs.unity3d

.com/ScriptReference/Collider.html

Yigitbas, E., Jovanovikj, I., Sauer, S., & Engels, G. (2020). On the development of context-

aware augmented reality applications. In J. Abdelnour Nocera et al. (Eds.), Beyond

interactions (pp. 107–120). Cham: Springer International Publishing.

12

https://mercuna.com/3d-navigation/
https://mercuna.com/3d-navigation/
https://docs.unity3d.com/ScriptReference/Collider.html
https://docs.unity3d.com/ScriptReference/Collider.html

	Contents
	1 Introduction
	2 Aspects of Context-sensitivity
	3 Implementation
	3.1 Surface-Detection
	3.2 3D-Navigation

	4 Limitations
	5 Future Work
	6 Declaration
	Appendix
	References

